Back

Paper

AP2C - ACM Papers Session 2C

Fully booked
Tuesday, June 4, 2024
14:00
-
15:30
CEST
HG E 1.1

Replay

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Session Chair

Description

Presentations

14:00
-
14:30
CEST
Towards Sobolev Pruning

The increasing use of stochastic models for describing complex phenomena warrants surrogate models that capture the reference model characteristics at a fraction of the computational cost, foregoing potentially expensive Monte Carlo simulation. The predominant approach of fitting a large neural network and then pruning it to a reduced size has commonly neglected shortcomings. The produced surrogate models often will not capture the sensitivities and uncertainties inherent in the original model. In particular, (higher-order) derivative information of such surrogates could differ drastically. Given a large enough network, we expect this derivative information to match. However, the pruned model will almost certainly not share this behavior.

In this paper, we propose to find surrogate models by using sensitivity information throughout the learning and pruning process. We build on work using Interval Adjoint Significance Analysis for pruning and combine it with the recent advancements in Sobolev Training to accurately model the original sensitivity information in the pruned neural network based surrogate model. We experimentally underpin the method on an example of pricing a multidimensional Basket option modelled through a stochastic differential equation with Brownian motion. The proposed method is, however, not limited to the domain of quantitative finance, which was chosen as a case study for intuitive interpretations of the sensitivities. It serves as a foundation for building further surrogate modelling techniques considering sensitivity information.

Neil Kichler, Sher Afghan, and Uwe Naumann (RWTH Aachen University)
With Thorsten Kurth (NVIDIA Inc.)
14:30
-
15:00
CEST
Topological Interpretability for Deep Learning

With the growing adoption of AI-based systems across everyday life, the need to understand their decision-making mechanisms is correspondingly increasing. The level at which we can trust the statistical inferences made from AI-based decision systems is an increasing concern, especially in high-risk systems such as criminal justice or medical diagnosis, where incorrect inferences may have tragic consequences. Despite their successes in providing solutions to problems involving real-world data, deep learning (DL) models cannot quantify the certainty of their predictions. These models are frequently quite confident, even when their solutions are incorrect.

This work presents a method to infer prominent features in two DL classification models trained on clinical and non-clinical text by employing techniques from topological and geometric data analysis. We create a graph of a model's feature space and cluster the inputs into the graph's vertices by the similarity of features and prediction statistics. We then extract subgraphs demonstrating high-predictive accuracy for a given label. These subgraphs contain a wealth of information about features that the DL model has recognized as relevant to its decisions. We infer these features for a given label using a distance metric between probability measures, and demonstrate the stability of our method compared to the LIME and SHAP interpretability methods. This work establishes that we may gain insights into the decision mechanism of a DL model. This method allows us to ascertain if the model is making its decisions based on information germane to the problem or identifies extraneous patterns within the data.

Adam Spannaus, Heidi Hanson, and Georgia Tourassi (Oak Ridge National Laboratory) and Lynne Penberthy (NIH)
With Thorsten Kurth (NVIDIA Inc.)
15:00
-
15:30
CEST
PETScML: Second-Order Solvers for Training Regression Problems in Scientific Machine Learning

In recent years, we have witnessed the emergence of scientific machine learning as a data-driven tool for the analysis, by means of deep-learning techniques, of data produced by computational science and engineering applications.
At the core of these methods is the supervised training algorithm to learn the neural network realization, a highly non-convex optimization problem that is usually solved using stochastic gradient methods. However, distinct from deep-learning practice, scientific machine-learning training problems feature a much larger volume of smooth data and better characterizations of the empirical risk functions, which make them suited for conventional solvers for unconstrained optimization.
We introduce a lightweight software framework built on top of the Portable and Extensible Toolkit for Scientific computation to bridge the gap between deep-learning software and conventional solvers for unconstrained minimization.
We empirically demonstrate the superior efficacy of a trust region method based on the Gauss-Newton approximation of the Hessian in improving the generalization errors arising from regression tasks when learning surrogate models for a wide range of scientific machine-learning techniques and test cases. All the conventional second-order solvers tested, including L-BFGS and inexact Newton with line-search, compare favorably, either in terms of cost or accuracy, with the adaptive first-order methods used to validate the surrogate models.

Stefano Zampini (King Abdullah University of Science and Technology), Umberto Zerbinati (University of Oxford), and George Turkyyiah and David Keyes (King Abdullah University of Science and Technology)
With Thorsten Kurth (NVIDIA Inc.)