P26 - GPU-Accelerated Linear-Response for DFT+Hubbard Using the SIRIUS Library
Description
Electronic-structure methods have been indispensable in materials science, especially on the study of existing and the discovery of novel materials. Linear-response (LR) algorithms, a computationally intensive step compared to the self-consistent cycle, are widely present in electronic-structure codes and are used for the calculations of Koopmans screening parameters for spectral properties, for Hubbard (U+V) parameters, phonons, magnetic response, electron-phonon and phonon-phonon couplings. Aiming to benefit from hardware accelerators such as GPUs, we implemented the LR algorithm for GPU execution in SIRIUS, a domain specific library for electronic structure calculations. Then, we proceeded with detailed profiling and performance optimizations. We present our investigations and findings, and show that a SIRIUS-enabled version of Quantum ESPRESSO’s hp.x, used for the ab-initio calculation of Hubbard parameters, is more efficient than native QE’s hp.x on CSCS HPC systems. We also present performance results obtained from pre-exascale HPC facilities (LUMI).