Button Text
Back

P33 - Inviscid Dynamo Simulation Using QuICC

This is some text inside of a div block.
This is some text inside of a div block.
-
This is some text inside of a div block.
CEST
Climate, Weather and Earth Sciences
Chemistry and Materials
Computer Science, Machine Learning, and Applied Mathematics
Applied Social Sciences and Humanities
Engineering
Life Sciences
Physics
This is some text inside of a div block.

Description

Earth’s magnetic field is believed to be generated in the metallic outer core through a process known as the geodynamo. Direct numerical simulation (DNS) of the geodynamo has successfully reproduced many features of the Earth’s field. However, even the state-of-the-art simulations have a much higher viscosity than the Earth’s outer core. Taylor (1963) proposed a reduced model by neglecting inertia and viscous force. A modified model that partially re-introduces the inertia term back is termed the torsional wave (TW) dynamo model. Luo (2021) developed the first 3D TW dynamo model (or inviscid convective dynamo model), a branch of the fully spectral efficiently parallelized CFD code QuICC. In this study, we present new results of inviscid dynamo simulation at a higher truncation level L_{B}= 80. We observe the geostrophic flow dominates the velocity field, and the dipolar component dominates the magnetic field. The inviscid solution fundamentally differs from the viscous dynamos (with Ekman number E = 10^(-5)), which all have non-dipolar magnetic fields. Our inviscid simulation has great potential to give new insights into the geodynamo and other planetary dynamos, which current DNS can hardly achieve.

Presenter(s)

Authors